
Network-Centric Architecture

4 CROSSTALK The Journal of Defense Software Engineering August 2003

Designing Highly Available Web-Based Software Systems

Michael Acton
Lockheed Martin Mission Systems

Highly available Web-based applications require designs that address issues not only of availability, but also of reachability
and performance. This article defines high availability and presents approaches for producing maintainable, highly available
Web applications. This author cites the Global Combat Support System-Air Force, a network-centric, common technical serv-
ices-based highly available system as one such example.

To guarantee the quality of service
(QoS) deployed warfighters need,

combat support systems and applications
should be designed to provide near 100
percent availability. Each design activity,
which includes usability design, functional
design, role-based access control design,
and component design, supports the
warfighter in some meaningful way. When
dealing with the vast technical challenges
related to combat support Web applica-
tion design, it is important not to lose
sight of this overarching objective.

The Global Combat Support System-
Air Force (GCSS-AF) Air Force Portal,
shown in Figure 1, is an example of a Web
application that provides dynamic person-
alized content to warfighters. The Air
Force Portal provides both functional and
informational capabilities; warfighters can
perform their mission using the hosted
combat support mission applications,
access U.S. Air Force resources and tools,
and read about current events. Critical
combat support mission applications

hosted on the GCSS-AF system, like the
Online Vehicle Interactive Management
System, Fleet Asset Status, and the
Combat Ammunition System, provide
excellent examples of the types of Web
applications that should be designed for
high availability.

One aspect of application develop-
ment that is often overlooked is ensuring
that applications are designed to provide
high availability (HA). Proper attention
must be given to HA during application
design and integration testing to avoid
fielding applications that cannot provide
100 percent up time. To illustrate this
point, consider the testing phase, which
occurs late in development. Why is it that,
when compared to functional testing,
which usually receives proper attention,
HA testing is scarcely considered?

There are many reasons why HA does
not receive proper attention during the
design phase. One reason is that engineer-
ing teams are rushed to meet schedules
and do not have the time for proper HA

design. Another reason is that many soft-
ware engineers do not have experience
with HA construction and instead focus
primarily on functionality. Finally, Web
application development is a relatively
new paradigm; at least the aspect of
developing for a shared enterprise is new.

The remainder of this article defines
HA, presents concepts of HA system
design, and introduces design approaches
for producing maintainable, highly avail-
able Web applications.

HA Described
As viewed, HA is comprised of three key
components: availability, reachability, and
performance. If any of these components is
deficient or fails, then the Web-based sys-
tem is essentially rendered degraded, or
worse, unusable to the warfighters
depending on its services.

A system is available when all of the
necessary system services are up and oper-
ating correctly. When the system is avail-
able, users can log in through the security
subsystem, navigate the Web site, and
access and use any of the hosted Web
applications for which they have permis-
sion. Required services are those that must
be operating for a user to receive service.
If just one required service goes down, the
entire system moves into a state of non-
availability and becomes incapable of pro-
viding any service to users. For example,
every essential service of the system may
be alive except the security subsystem
user-authentication service. Without this
one crucial service, the system is rendered
non-operational. However, system avail-
ability is only one element of HA, the sys-
tem must also be both reachable and per-
forming adequately.

A system is reachable when users can
access it over the network using a Web
browser. Reachability is primarily con-
cerned with assuring robust network serv-
ice. Problems such as network service
outages, improperly configured firewalls
and proxies, and router failures will make
even an available system unreachable [1].

Figure 1: The GCSS-AF Air Force Portal at <https://www.my.af.mil>

August 2003 www.stsc.hill.af.mil 5

Designing Highly Available Web-Based Software Systems

If the system is both available and reach-
able, users will receive service, and hope-
fully with good performance.

For a Web application to be in a high-
ly available state, availability and reachabil-
ity must be provided in a redundant man-
ner that effectively removes all potential
single points of failure. Fail-over is a system
capability that allows a failed service to
automatically be recovered (usually on a
secondary or redundant server) in such a
manner that the impact on both system
processing and users’ work is negligible.
To ensure fail-over, every server, software
service, and network component compris-
ing the system must have at least two inde-
pendent instances configured. In this
manner, users cannot be denied service by
any single system component failure.

The performance of HA Web applica-
tions must, at a minimum, adequately
support warfighters in accomplishing
their mission. Poor performance hinders
user efficiency, creates frustration, and
ultimately degrades U.S. Air Force opera-
tional capability. Anybody that has ever
used a dial-up modem to connect to the
Internet has experienced poor perform-
ance due to phone line throughput limi-
tations (see Figure 2). T1 network lines
provide markedly faster data transfer
rates. Imagine warfighters deployed in
the desert trying to use a dial-up connec-
tion to access critical combat support
capabilities.

A monitoring capability for HA sys-
tems and applications must be designed as
part of the overall solution. Using the sys-
tem’s HA requirements, a comprehensive
set of metrics must be established, moni-
tored, and reported to ensure that all
aspects of the systems are meeting the
required HA thresholds. HA testing is
best accomplished by using proactive
monitoring tools that actually perform the
same actions performed by users. Simple
ping-style monitoring tools are not suffi-
cient because they are only capable of
checking the system health at the operat-
ing system level. These are not capable of
monitoring any application-level services.
Some important metrics to consider track-
ing are: overall aggregate system availabil-
ity (which considers all system services
necessary to provide service); overall
aggregate system reachability from several
locations (i.e., several different bases); and
average round-trip time for heavily used
capabilities (i.e., a commonly used transac-
tion performed via a Web application).

HA System Design
In order to design HA applications,
developers must understand the HA

capabilities that the hosting system
allows. Two of the most critical design
aspects of HA systems are the physical
system architecture and session cluster-
ing. In order to design HA Web applica-
tions, it is necessary to understand how
the hosting system implemented these
design characteristics.

GCSS-AF has been designed as a high-
ly available system, and affords services
that allow Web applications to be hosted
on the system in an HA configuration.
Availability, reachability, and performance
have been painstakingly designed and
implemented in the GCSS-AF system to
ensure that it performs adequately and
that no single point of failure exists. This
means that every aspect of the system is
immune from any single system compo-
nent failure.

Every physical server and software
service of GCSS-AF is carefully examined
during the architecture phase to ensure
that at least two independent silos are built
and configured in such a way that if any
one silo were to go down, the remaining
silo(s) would pick up the workload. The
intent is to provide users a system where
they do not experience any interruption of
service.

Figure 3 illustrates a simplified, tiered,
physical-system architecture suitable for
hosting HA Web applications (the GCSS-
AF architecture is significantly more com-
plex, both in terms of tiers and services).
Three Web servers and three Web applica-
tion servers are interconnected to form a

set of redundant services. In the event of
any system component failure (i.e., server
crash), these networked servers automati-
cally reroute user requests to an available
Web application server.

Figure 3 also illustrates simple fail-over
at the database server tier. Should the pri-
mary database server fail, the hot standby
database takes over and provides service
to maintain availability. In this case, the
database servers have been configured in a
server cluster. The clustering software
runs on each of the database servers and
can determine when a failure occurs.
When this clustering software determines
a failure, it promotes the hot standby serv-
er to the master database server.

In addition to fail-over, this configura-
tion also provides load balancing of user
sessions (at the Web and Web application
server tiers). Load balancing coupled with
fail-over provides a better operational
solution than fail-over alone because it
provides for greater scalability and takes
advantage of all available capacity, where-
as a hot standby idles until needed.

In fact, all GCSS-AF system compo-
nents have been designed using the HA

T1
56k modem

Figure 2: T1 Network Connections are
Capable of Rates of 1.544Mbps Versus a
Dial-Up Modem That Is Limited to 56Kbps

Web Server 1 Web Server 2 Web Server 3

Web Application
Server 1

Web Application
Server 2

Web Application
Server 3

Database
Server

Database
Server

Figure 3: Simplified Tiered System Architecture for Hosting HA Web Application

Network-Centric Architecture

6 CROSSTALK The Journal of Defense Software Engineering August 2003

principle of eliminating every potential
single point of failure. At the network
layer, reachability and network perform-
ance are provided by modern redundant
routers and switches, which ensure multi-
ple access paths to the system. The system
is made up of state-of-the-art redundant
hardware components that provide excep-
tional performance and availability
(GCSS-AF employs SunFire technology).

At the application layer, performance
and availability are provided by redundant
software services, which are hosted on dif-
ferent servers to prevent a server failure
from impacting software service availabil-
ity. Additionally, each software component
has been designed and configured to sup-
port HA optimally. None of this hap-
pened by chance; this was all considered in
the earliest phases of design.

The second crucial topic relative to
HA system design is user session fail-over
assurance. A user session is nothing more
than a set of related requests and respons-
es between the user and a Web application
server. A session is established when a
user first accesses the Web application,
and is maintained until the user logs off. If
for any reason the user session is lost, the
Web application server will no longer be
able to associate the user with the work
they were doing; all of the user’s unsaved
work will be lost.

The most common causes of user ses-
sion loss are server and required software
service failures (usually in the form of
crashes or corruptions). Although the
architecture depicted in Figure 3 does pro-
vide multiple paths for traversing between
tiers, it does not automatically provide
user session fail-over. Session fail-over

must be designed into the system.
There are essentially three session

management approaches used in Web
application servers: no session fail-over,
database persistent sessions, and memory-
to-memory sessions [2]. No session fail-
over is unfortunately the most common,
and is the default for most Web applica-
tion servers. In the event of a server fail-
ure, all user sessions will be lost along with
any unsaved work. These users will be
forced to log on again and start over from
scratch.

The second approach, database per-
sistent sessions, requires session data to be
stored and maintained in a database while
the session is alive. If the server fails, then

the user’s session will be transferred trans-
parently onto another Web application
server. However, a performance drawback
exists with the database approach – ses-
sion data must be saved and retrieved
from the database in order to maintain the
session state.

The third approach, memory-to-mem-
ory sessions, is the best approach. In this
approach, session data is replicated among

the servers, providing session fail-over and
much better performance than the data-
base approach. Because sessions can be
transferred among any of the servers in
the cluster, both the database and the
memory-to-memory session techniques
are referred to as session clustering approach-
es. Session clustering is required for HA sys-
tems like GCSS-AF.

Although session clustering is docu-
mented as an open standard in the Java
Servlet 2.3 Application Program Interface
(API) Specification, clustering does not
generally provide fail-over across applica-
tion servers in different vendor imple-
mentations. For example, a Web applica-
tion hosted on IBM WebSphere cannot
fail-over to the Oracle 9iAS and vice-
versa. Therefore, session clustering must
be addressed separately for each support-
ed application server type (GCSS-AF sup-
ports four different Web application
servers: IBM WebSphere, Microsoft IIS,
Oracle 9iAS, and BroadVision IM; each is
independently configured for HA).

Now that some of the important
aspects of HA system design have been
addressed, we delve into the design con-
siderations for HA Web applications.

Web Application HA Design
Considerations
GCSS-AF treats Web applications as soft-
ware components. Consequently, GCSS-
AF hosted Web applications should be
designed using approaches similar to the
HA system design for software services.
The key design elements required for Web
application HA include scaling and
cloning, treatment of transient data, and
wise extension of user sessions with cus-
tom objects to provide a survivable stor-
age mechanism for transient data.

Scaling and Cloning
Horizontal scaling means that a Web
application has been cloned and is run-
ning on at least two independent servers
configured to ensure fail-over. Horizontal
cloning is required for Web applications to
operate in a HA state; it provides fail-over,
load balancing, additional user capacity,
and enables scalability.

Assuming the application has been
designed properly, cloning is a relatively
simple task to perform on most Web
application servers. For example, on
GCSS-AF, it takes about two hours to
horizontally clone a combat support mis-
sion application. Web application clones
can also be placed into a vertical scaling
scenario where multiple Web application
instances run on one application server.

Web Server 1 Web Server 2 Web Server 3

Web Application
Server 1

Web Application
Server 2

Web Application
Server 3

Web A pp 1

Web A pp 1

Web A pp 2

Web A pp 1 Web A pp 2

Figure 4: Web App 1 Is Scaled Both Horizontally and Vertically. Web App 2 Is Only Scaled
Horizontally. Horizontal Scaling Is Required for HA; Vertical Scaling Is Not

“Why is it that, when
compared to functional
testing, which usually

receives proper attention,
HA testing is scarcely

considered?”

Designing Highly Available Web-Based Software Systems

August 2003 www.stsc.hill.af.mil 7

Vertical scaling can provide additional
capacity, and does provide server-level
fail-over. Figure 4 illustrates Web applica-
tions in both horizontal and vertical scal-
ing configurations.

Prior to establishing redundancy
through horizontal scaling, a full capacity
analysis should be conducted to deter-
mine the system resources required to
serve the planned user base. The capacity
analysis catalogs the total number of
users, the average and peak concurrent
user load, required application Random-
Access Memory per instance, cumulative
required hard disk space, and other pro-
duction-related details to arrive at a physi-
cal fielding profile for the Web application.
The fielding profile depicts how many
Web application instances are necessary
and lays out precisely which application
servers they will reside on.

Additionally, it is important that
enough capacity is provided through
resource provisioning (Web and applica-
tion servers, Web application instances,
memory, storage, etc.) so that if any one
system or application component fails, the
average user load can still be served. In
other words, extra capacity must be allo-
cated by design to handle failures and
times of peak usage. The goal of GCSS-
AF is to run servers at not more than 40
percent capacity under average load con-
ditions; this allows the necessary excess
capacity.

Treatment of Transient Data
Strict separation between layers, as pre-
scribed by the Model-View-Controller
(MVC) logical design paradigm [3], results
in applications that have business logic
and data clearly separated (see Figure 5).
This decoupling of layers greatly reduces
complexity, fosters code reuse, enables
flexibility, and simplifies maintainability
throughout the life cycle. In short, MVC
provides the necessary logical design
foundation for developing maintainable
and HA applications.

MVC-designed applications should
not manipulate database data directly
using Java Database Connectivity (JDBC);
instead, they should take a pure object-ori-
ented approach and interact with data
using objects [4]. Data objects are imple-
mented as Entity Beans or simple
JavaBeans, and are buffered by the data
access layer, which directly communicates
with the database via JDBC.

Using the MVC logical design
approach results in Web applications that
are suitable for running in a HA mode
because they scale nicely (both horizontal-
ly and vertically). However, using MVC

does not prevent developers from making
HA design mistakes. For instance, MVC
does not preclude the use of transient ses-
sion data. Transient session data can best
be viewed as the user’s unsaved work on
the Web application server. If the server
fails, all transient data is lost, just like when
a workstation user experiences a power
outage with unsaved work. In the event of
a failure, HA-enabled Web applications
will fail-over to another server, however,
all transient data will be lost. HA Web
applications must be designed in such a
fashion that a session fail-over will not
result in the loss of any of the user’s work.
Specifically in Java 2 Enterprise Edition,
the servlets, JavaBeans, Java classes, and
Enterprise JavaBeans (EJBs) can contain
transient data [5].

Session EJBs illustrate the pitfalls of
using transient data in HA Web applica-
tions. Session EJBs can be either stateful
or stateless. Stateful session beans main-
tain transient state information (in-memo-
ry data) that is used to serve or converse
with the user. Stateful sessions are valu-
able because they allow data caching,
which can dramatically improve perform-
ance. However, they do have a dark side.
Should the application server fail, all of
this transient data is permanently lost. For
example, consider a warfighter placing an
order for communications equipment
(using a combat support mission Web
application similar to Amazon.com). As
the warfighter places items into the shop-
ping cart, the stateful session bean keeps
track of the requested items in-memory.
The EJB now has state, namely this in-
memory list of items. Completing the
order and checking out depends on the in-
memory state information remaining

available. The problem with this approach
for HA Web applications is that when a
server fails, this state information is lost
and cannot be recovered. The user will be
disrupted, and be forced to start over [6].

Properly designed HA Web applica-
tions can prevent users from experiencing
transient data loss by employing stateless
objects. Stateless session beans maintain
no in-memory state data that could be lost
in the event of a server failure. Each
method in a stateless session EJB executes
independently and does not rely on or
store any in-memory state data. Again,
consider the warfighter shopping cart
example; since a stateless session bean
does not maintain state data, the bean
must add the warfighter’s selected items to
a persistent object (which moves the data
into a database table via the Data Access
Layer, see Figure 5). At checkout, the
selected items will be retrieved from this
table and the transaction will be complet-
ed. In the event of a failure, the clustered
session would fail-over to another applica-
tion server, and upon checkout the new
application server would simply read the
list of selected items from a persistent
object (which pulls the data from the data-
base table) and complete the order.
Because of this resiliency, HA Web appli-
cations should only use stateless session
beans. This treatment of transient data
applies to servlets and regular JavaBeans
as well.

Customizing the Session Object
If a Web application has the need to store
information about a user in addition to
what the user session object provides, a
good approach is to extend the session by
adding custom objects. Returning to our

View (or Presentation) Layer: Provides the user interface capabilities.

Controller Layer: Provides an interface between the View and Model
Layers preserving the independence of these layers.

Model Layer: Provides the functional business logic APIs. This layer

Data Access Layer: Provides a mapping between the Business Logic
(Model) Layer and the Data Layer.

Data Layer: Provides the physical storage of data. This can be in a

also provides data objects used by the executable code.

database, data warehouse, data mart, etc.

Figure 5: Model-View-Controller Logical Tiered Architecture

Network-Centric Architecture

8 CROSSTALK The Journal of Defense Software Engineering August 2003

warfighter shopping cart example, we
could extend the user session object by
adding an object called SelectedItems
(which is a Java ArrayList of Equip-
mentItems). The warfighter’s selected
items can now be stored in the new
SelectedItems object of the user’s session.
To process the checkout, these items are
simply retrieved from this in-memory
object (assuming memory-to-memory ses-
sion clustering is used). In the event of a
server failure, these objects will be treated
as part of the user’s session and will be
subject to session clustering fail-over previ-
ously discussed. Thus, a server failure will
cause a complete fail-over of the user’s ses-
sion and transient data without the user ever
experiencing any interruption in service.
This approach also provides a gain in per-
formance because the SelectedItems are
stored in memory instead of the database.
This is a good approach for a relatively
small amount of data. Large amounts of
data should not be stored with the user ses-
sion object [2].

Conclusion
Developing HA systems and applications
is not about technology. It is about meeting
the needs of the warfighter. To serve the
warfighter, Web applications should be
designed up-front to provide HA, which
can be viewed as a composition of three
components: availability, reachability, and
performance. Each of these HA elements
must be designed into the hosting system
as well as the Web application. HA systems
must ensure that the architecture designs
away all single points of failure. The most
important consideration for HA Web
applications is horizontal scaling. Other
important aspects of HA design include
strict separation between layers (using
MVC), the use of session clustering and
fail-over, the treatment of transient data,
and extending the session object with cus-
tom objects.◆

References
1. Tanenbaum, A. Computer Networks.

3rd ed. New Jersey: Prentice Hall PTR,
1996.

2. IBM WebSphere Version Information
Center: Session Management Support
<http://publib7b.boulder.ibm.com/
wasinfo1>.

3. Alur, D. et al. Core J2EE Patterns:
Best Practices and Design Strategies.
New Jersey: Prentice Hall PTR, 2001.

4. Sun MicroSystems: Java Data Object
API Specification <http://java.
sun.com/products/jdo>.

5. Hall, M. Core Servlets and JavaServer
Pages. New Jersey: Prentice Hall PTR,
2000.

6. Monson-Haefel, R. Enterprise Java
Beans. 2nd ed. Sebastopol, CA:
O’Reilly, 2000.

Additional Reading
1. Alberts, David S. Network Centric

Warfare: Developing and Leveraging
Information Superiority. 2nd ed re-
vised. CCRP Publication Series, 2000.

2. Java and J2EE Timeline <http://java.
sun.com/features/2000/06/time-line.
html>.

3. Martin, J. “On Service Level Agree-
ments for IP Networks.” Proc. of the
IEEE Infocom 2002 Conference
<http://www.ieee infocom.org/
2002/papers/455.pdf>.

4. Pressman, R. Software Engineering, A
Practitioner’s Approach. 4th ed. New
York: McGraw-Hill, 1997.

5. Stevens, W. UNIX Network Program-
ming. 2nd ed. New Jersey: Prentice
Hall PTR, 1998.

6. Wang, Z. Internet QoS: Architectures
and Mechanisms for Quality of
Service. San Francisco: Morgan
Kaufmann, 2001.

About the Author

Michael Acton is a
software systems engi-
neer with Lockheed
Martin Mission Sys-
tems, a Capability
Maturity Model® Level

5 organization. As the Global Combat
Support System-Air Force (GCSS-
AF) Operations and Support chief
engineer, he is responsible for leading
multiple engineering teams that pro-
vide the services necessary to operate
the system, provide Level 2 help-desk
support, install new capabilities, and
integrate Java 2 Enterprise Edition-
based mission applications. He was
recognized as a 2002 GCSS-AF
Program Top Contributor. Acton is a
doctorate candidate at Auburn
University.

Lockheed Martin
Mission Systems
4520 Executive Park Drive
Montgomery, AL 36116
Phone: (334) 416-6029
Fax: (334) 273-5560
E-mail: michael.acton@gunter.af.mil

michael.acton@lmco.com

September 8-12
International Conference on Practical

Testing Techniques
Minneapolis, MN

www.psqtconference.com/2003north

September 15-18
Software Development Best Practices

Boston, MA
www.sdexpo.com/2003/east

September 14-19
International Function Point Users

Group Annual Conference
Scottsdale, AZ

www.ifpug,org/conferences/annual.htm

September 22-25
AUTOTESTCON 2003

Anaheim, CA
www.autotestcon.com

September 24-26
International Conference on Visual

Languages and Computing
Miami, FL

www.vlc03.cs.ucla.edu

October 15-18
Richard Tapia Diversity in

Computing Conference
Atlanta, GA

www.ncsa.uiuc.edu/Conferences/
Tapia2003

October 20-24
Quality Assurance Joint Conference on

Compressing Software Development Time
Baltimore, MD

www.qaiusa.com

November 18-21
International Conference on Software

Process Improvement
Washington, DC

www.software-process-institute.com

April 19-22, 2004
Software Technology Conference 2004

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office.

